Gaussian, LogGaussian PDF in Pytorch
def GaussianPDF(mean, logvar, z): r""" Return the PDF value of z in N(mean,exp(logvar)) mean, logvar : [*, dim_z] z : [*, N, dim_z] return: [*, N, dim_z] """ if type(mean) is torch.Tensor: mean, logvar = mean.unsqueeze(-2), logvar.unsqueeze(-2) return 1/(np.sqrt(2*np.pi)*torch.exp(logvar*0.5)) * torch.exp(-((z-mean)**2) / (2*torch.exp(logvar))) elif type(mean) is np.ndarray: mean, logvar = np.ex..
더보기