ChatGPT: To improve the performance of your U-Net-based intrinsic noise estimation network, consider the following architectural modifications:
1. Enhancing Feature Representations
a. Using Residual Connections (ResUNet)
Replace standard convolutional blocks with Residual Blocks to ease gradient flow and improve training stability.
Residual blocks reduce vanishing gradient issues, helping the network learn better noise estimation.
Implementation:
python복사편집class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.relu = nn.ReLU(inplace=True)
self.skip = nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
def forward(self, x):
identity = self.skip(x)
out = self.relu(self.conv1(x))
out = self.conv2(out) + identity
return self.relu(out)
Replace U-Net’s encoder/decoder convolutions with residual blocks.
b. Using Transformer Layers for Global Context
Replace some convolutional blocks with Transformer blocks (e.g., self-attention layers) to capture long-range dependencies in features.
ViT-style encoder or Transformer-based skip connections can improve performance in complex noise patterns.
Example: Replace standard U-Net bottleneck with a Self-Attention Block:
python복사편집class SelfAttention(nn.Module):
def __init__(self, channels):
super().__init__()
self.norm = nn.LayerNorm([channels, 1, 1])
self.qkv = nn.Conv2d(channels, channels * 3, 1, bias=False)
self.proj = nn.Conv2d(channels, channels, 1)
def forward(self, x):
B, C, H, W = x.shape
q, k, v = torch.chunk(self.qkv(self.norm(x)), 3, dim=1)
attn = (q @ k.transpose(-2, -1)) / (C ** 0.5)
attn = torch.softmax(attn, dim=-1)
x = (attn @ v).reshape(B, C, H, W)
return self.proj(x)
Use Hybrid CNN-Transformer U-Net (like in Diffusion models) to capture both local and global noise patterns.
2. Improving Noise Estimation
a. Multi-Scale Feature Aggregation
Instead of a simple U-Net, add Dense Skip Connections (DenseUNet) or Squeeze-Excitation Blocks.
This ensures that small and large noise components are estimated correctly.
Example:
python복사편집class SEBlock(nn.Module):
def __init__(self, channels, reduction=16):
super().__init__()
self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channels, channels // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channels // reduction, channels, bias=False),
nn.Sigmoid(),
)
def forward(self, x):
b, c, _, _ = x.size()
w = self.global_avg_pool(x).view(b, c)
w = self.fc(w).view(b, c, 1, 1)
return x * w
Improves feature importance selection.
b. FiLM-Based Conditioning for Noise Estimation
If the noise is condition-dependent, use FiLM layers (Feature-wise Linear Modulation) to dynamically adjust feature representations.
This can remove structured noise while preserving useful information.
3. Training & Loss Function Improvements
a. Perceptual Loss
Instead of just L1 or L2 loss, use a perceptual loss (VGG-based feature loss) to compare noise-free and noisy feature maps in a high-dimensional space.
python복사편집from torchvision import models
class PerceptualLoss(nn.Module):
def __init__(self):
super().__init__()
self.vgg = models.vgg16(pretrained=True).features[:16].eval()
for param in self.vgg.parameters():
param.requires_grad = False
def forward(self, x, y):
return torch.nn.functional.mse_loss(self.vgg(x), self.vgg(y))
Helps in removing perceptually important noise components.
b. Self-Supervised Learning for Noise Estimation
If labeled noise-free features are not available, train the network using self-supervised denoising like Noisy2Noise or contrastive loss.
4. Architectural Variations
a. SwinUNet (Swin Transformer-based U-Net)
Replaces CNN encoder with a Swin Transformer to improve noise generalization.
b. Attention-Enhanced UNet
Uses Attention Gates at skip connections to suppress irrelevant noise features.
python복사편집class AttentionGate(nn.Module):
def __init__(self, F_g, F_l, F_int):
super().__init__()
self.W_g = nn.Conv2d(F_g, F_int, kernel_size=1)
self.W_x = nn.Conv2d(F_l, F_int, kernel_size=1)
self.psi = nn.Conv2d(F_int, 1, kernel_size=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = torch.sigmoid(self.psi(psi))
return x * psi
Ensures that skip connections only pass relevant information for noise removal.
Final Thoughts
For improving intrinsic noise estimation and subtraction, the best architectural improvements would be:
✅ Residual U-Net + Attention Mechanisms
✅ Hybrid CNN-Transformer U-Net
✅ Feature Modulation (FiLM, SE blocks)
✅ Perceptual or Self-Supervised Loss
Would you like a custom implementation based on your needs? 🚀
'Deep Learning' 카테고리의 다른 글
fatal factors that make the self-supervised training for monodepth estimation extremely difficult when trained on nuScenes (0) | 2025.03.24 |
---|---|
Noise estimation idea 2 (0) | 2025.03.18 |
Class-specific DDPM (0) | 2025.03.11 |
[Pytorch] Inputting specified model parameters to optimizer (0) | 2025.01.14 |
How to count the number of parameters of a NN and measure FLOPs required for the NN (0) | 2024.12.18 |